Vegetation Index

Author:

Nagarajan Suresh Kumar1,Sangaiah Arun Kumar1

Affiliation:

1. VIT University, India

Abstract

This is the survey for finding vegetation, deforestation of earth images from various related papers from different authors. This survey deals with remote sensing and normalized difference vegetation index with various techniques. We survey almost 100 theoretical and empirical contributions in the current decade related to image processing, NDVI generation by using various new techniques. We also discuss significant challenges involved in the adaptation of existing image processing techniques to generation NDVI systems that can be useful in the real world. The resolution of remote sensing images increases every day, raising the level of detail and the heterogeneity of the scenes. Most of the existing geographic information systems classification tools have used the same methods for years. With these new high resolution images, basic classification methods do not provide satisfactory results.

Publisher

IGI Global

Reference20 articles.

1. Bauer & Schneider. (2009). Analysis of time series of Landsat images. Institute of Surveying, Remote Sensing and Land Information, University of Natural Resources and Applied Life Sciences (BOKU).

2. Chitade & Katiyar. (2010). Colour Based Image Segmentation using K-Means Clustering. Department of Civil Engineering, Manit, Bhopal, Madhyapradesh.

3. Fensholt, Sandholt, & Stisen. (2006). Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Compton Tucker at Institute of Geography, University of Copenhagen, University of Copenhagen.

4. Gherghina. (2009). Grid Services and Satellite Image Processing for urban and river bed changes assessment. “Ovidius” University of Constantza.

5. Gorgan, Bacu, Stefanut, Rodila, & Mihon. (2009). Grid based Satellite Image Processing Platform for Earth Observation Application Development. Technical University of Cluj-Napoca.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3