Context-Based Scene Understanding

Author:

Zolghadr Esfandiar1,Furht Borko1

Affiliation:

1. Florida Atlantic University, USA

Abstract

Context plays an important role in performance of object detection. There are two popular considerations in building context models for computer vision applications; type of context (semantic, spatial, scale) and scope of the relations (pairwise, high-order). In this paper, a new unified framework is presented that combines multiple sources of context in high-order relations to encode semantical coherence and consistency of the scenes. This framework introduces a new descriptor called context relevance score to model context-based distribution of the response variables and apply it to two distributions. First model incorporates context descriptor along with annotation response into a supervised Latent Dirichlet Allocation (LDA) built on multi-variate Bernoulli distribution called Context-Based LDA (CBLDA). The second model is based on multi-variate Wallenius' non-central Hyper-geometric distribution and is called Wallenius LDA (WLDA). WLDA incorporates context knowledge as bias parameter. Scene context is modeled as a graph and effectively used in object detection framework to maximize semantical consistency of the scene. The graph can also be used in recognition of out-of-context objects. Annotation metadata of Sun397 dataset is used to construct the context model. Performance of the proposed approaches was evaluated on ImageNet dataset. Comparison between proposed approaches and state-of-art multi-class object annotation algorithm shows superiority of presented approach in labeling of scene content.

Publisher

IGI Global

Reference47 articles.

1. A Comparative Study of Bag-of-Words and Bag-of-Topics Models of EO Image Patches

2. Quantifying the role of context in visual object recognition

3. Speeded-Up Robust Features (SURF)

4. Bengio, S., Dean, J., Erhan, D., Ie, E., Le, Q., Rabinovich, A., & Singer, Y. (2013). Using web co-occurrence statistics for improving image categorization.

5. Perceiving Real-World Scenes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3