Design and Optimization of Generalized PD-Based Control Scheme to Stabilize and to Synchronize Fractional-Order Hyperchaotic Systems

Author:

Soukkou Ammar1,Boukabou Abdelkrim1

Affiliation:

1. University of Jijel, Algeria

Abstract

This chapter will establish the importance and significance of studying the fractional-order control of nonlinear dynamical systems and emphasize the link between the factional calculus and famous PID control design. It will lay the foundation related to the research scope, problem formulation, objectives and contributions. As a case study, a fractional-order PD-based feedback (Fo-PDF) control scheme with optimal knowledge base is developed in this work for achieving stabilization and synchronization of a large class of fractional-order chaotic systems (FoCS). Based and derived on Lyapunov stabilization arguments of fractional-order systems, the stability analysis of the closed-loop control system is investigated. The design and multiobjective optimization of Fo-PDF control law is theoretically rigorous and presents a powerful and simple approach to provide a reasonable tradeoff between simplicity, numerical accuracy, and stability analysis in control and synchronization of FoCS. The feasibility and validity of this developed Fo-PDF scheme have been illustrated by numerical simulations using the fractional-order Mathieu-Van Der Pol hyperchaotic system.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3