Hybrid Non-Dominated Sorting Genetic Algorithm

Author:

Chatterjee Sankhadeep1,Sarkar Sarbartha2,Dey Nilanjan3,Ashour Amira S.4,Sen Soumya1

Affiliation:

1. University of Calcutta, India

2. Indian Institute of Technology Dhanbad, India

3. Techno India College of Technology, India

4. Taif University, Saudi Arabia & Tanta University, Egypt

Abstract

Water pollution due to industrial and domestic reasons is highly affecting the water quality. In undeveloped and developed countries, it has become a major reason behind a number of water borne diseases. Poor public health is putting an extra economic liability in order to deploy precautionary measures against these diseases. Recent research works have been directed toward more sustainable solutions to this problem. It has been revealed that good quality of water supply can not only improve the public health, it also accelerates economic growth of a geographical location as well. Water quality prediction using machine learning methods is still at its primitive stage. Besides, most of the studies did not follow any national or international standard for water quality prediction. In the current work, both the problems have been addressed. First, advanced machine learning methods, namely Artificial Neural Networks (ANNs) supported by a well-known multi-objective optimization algorithm called the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) has been used to classify the water samples into two different classes. Secondly, Indian national standard for water quality (IS 10500:2012) has been utilized for this classification task. The hybrid NN-NSGA-II model is compared with another two well-known meta-heuristic supported ANN classifiers, namely ANN trained by Genetic Algorithm (NN-GA) and by Particle Swarm Optimization (NN-PSO). Apart from that, the support vector machine (SVM) has also been included in the comparative study. Besides analysing the performance based on several performance measuring methods, the statistical significance of the results obtained by NN-NSGA-II has been judged by performing Wilcoxon rank sum test with 5% confidence level. Results have indicated the ingenuity of the proposed NN-NSGA-II model over the other classifiers under current study.

Publisher

IGI Global

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AO-SAKEL: arithmetic optimization-based self-adaptive kernel extreme learning for international trade prediction;Evolving Systems;2023-06-18

2. Variants of Genetic Algorithms and Their Applications;Applied Genetic Algorithm and Its Variants;2023

3. Research on Calculation Method of Fuel Temperature According to Airworthiness Regulations;International Journal of Aeronautical and Space Sciences;2021-09-01

4. Managing Transportation in Supply Chain;Handbook of Research on Recent Perspectives on Management, International Trade, and Logistics;2021

5. TLBO Based Cluster-Head Selection for Multi-objective Optimization in Wireless Sensor Networks;Nature Inspired Computing for Wireless Sensor Networks;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3