A Wrapper-Based Classification Approach for Personal Identification through Keystroke Dynamics Using Soft Computing Techniques

Author:

D. Shanmugapriya1,Ganapathi Padmavathi2

Affiliation:

1. Avinashilingam Institute for Home Science and Higher Education for Women, India

2. Avinashlingam Institute for Home Science and Higher Education for Women, India

Abstract

The password is the most widely used identity verification method in computer security domain. However, due to its simplicity, it is vulnerable to imposters. A way to strengthen the password is to combine Biometric technology with password. Keystroke dynamics is one of the behavioural biometric approaches which is cheaper and does not require any sophisticated hardware other than the keyboard. The chapter uses a new feature called Virtual Key Force along with the commonly extracted timing features. Features are normalized using Z-Score method. For feature subset selection, Particle Swarm Optimization wrapped with Extreme Learning Machine is proposed. Classification is done with wrapper based PSO-ELM approach. The proposed methodology is tested with publically available benchmark dataset and real time dataset. The proposed method yields the average accuracy of 97.92% and takes less training and testing time when compared with the traditional Back Propagation Neural Network.

Publisher

IGI Global

Reference73 articles.

1. Anomaly intrusion detection based on biometrics

2. Improving feature extraction in keystroke dynamics using optimization techniques and neural network

3. User-Representative Feature Selection for Keystroke Dynamics.;E.Al Solami;Proceedings on 5th International Conference on Network and System Security (NSS),2011

4. Keystroke recognition in user authentication using ANN based RGB histogram technique

5. Keystroke Dynamics on Android Platform;M.Antal;Procedia Technology,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Key Stroke Dynamics-Based Security Schemes;Biometric-Based Physical and Cybersecurity Systems;2018-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3