Fuzzy Techniques for Content-Based Image Retrieval

Author:

Rose Bindu Joseph P. 1,Devarasan Ezhilmaran1

Affiliation:

1. VIT University, India

Abstract

Content-based image retrieval aims to acquire images from huge databases by analyzing their visual features like color, texture, shape, and spatial relationship. The search for superior accuracy in image retrieval has resulted in concentrating more on semantic gap reduction between the low-level features and high level human reasoning. Fuzzy theory is a prevailing methodology which helps in attaining this goal by using attributes and interpretations similar to human reasoning. The vagueness and impreciseness in image data and the retrieval process can be modeled by fuzzy sets. This chapter analyses fuzzy theoretic approaches in various stages of content-based image retrieval system. Various fuzzy-based feature descriptors are discussed along with different fuzzy classification and indexing algorithms for content-based image retrieval. This chapter also presents an overview of various fuzzy distance and similarity measures for image retrieval. A novel fuzzy theoretic retrieval for finger vein biometric images is also proposed in this chapter with experiment and analysis.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3