Trace- and Social-Based Modeling of Human Mobility Patterns

Author:

Diab Ali1,Mitschele-Thiel Andreas2

Affiliation:

1. Al-Baath University, Syria & Ilmenau University of Technology, Germany

2. Ilmenau University of Technology, Germany

Abstract

The 5th Generation (5G) of mobile communication networks is being developed to address the demands and business contexts of 2020 and beyond. Its vision is to enable a fully mobile and connected society and also to trigger socio-economic transformations in ways eventually unimagined today. This means that the physical world to be covered with planned 5G networks including communication networks, humans and objects is becoming a type of an information system. So as to improve the experience of individuals, communities, societies, etc. within such systems, a thorough comprehension of intelligence processes responsible of generating, handling and controlling those data is fundamental. One of the major aspects in this context and also the focus of this chapter is the development of novel methods to model human mobility patterns, which have crucial role in forthcoming communication technologies. Human mobility patterns models can be categorized into synthetic, trace-based and community-based models. Synthetic models are largely preferred and widely applied to simulate mobile communication networks. They try to capture the patterns of human movements by means of a set of equations. These models are traceable, however, not capable of generating realistic mobility models. The key idea of trace-based models is the exploitation of available measurements and traces achieved in deployed systems to reproduce synthetic traces characterized by the same statistical properties of real traces. A main drawback of trace-based modeling of human patterns is the tight coupling between the trace-based model and the traces collected, the network topology deployed and even the geographic location, where the traces were collected. This is why the results of various trace-based models deviate clearly from each other. Sure, this prohibits the generalization of trace-based models. When one also considers that the traces themselves are rarely available, one can understand why synthetic models are preferred over trace-based ones. Community-based modeling of human movements depends on the fact stating that mobile devices are usually carried by humans, which implies that movement patterns of such devices are necessarily related to human decisions and socialization behaviors. So, human movement routines heavily affect the overall movement patterns resulting. One of the major contributions in this context is the application of social networks theory to generate more realistic human movement patterns. The chapter highlights the state of art and provides a comprehensive investigation of current research efforts in the field of trace- and social-based modeling of human mobility patterns. It reviews well-known approaches going through their pros and cons. In addition, the chapter studies an aspect that heavily relates to human mobility patterns, namely the prediction of future locations of users.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3