Bio-Inspired Snake Robots

Author:

Koopaee Mohammadali Javaheri1,Gilani Cid1,Scott Callum1,Chen XiaoQi1

Affiliation:

1. University of Canterbury, New Zealand

Abstract

This chapter concerns modelling and control of snake robots. Specifically, the authors' main goal is introducing some of the fundamental design, modelling, and control approaches introduced for efficient snake robot locomotion in cluttered environments. This is a critical topic because, unlike locomotion in flat surfaces, where pre-specified gait equations can be employed, for locomotion in unstructured environment more sophisticated control approaches should be used to achieve intelligent and efficient mobility. To reach this goal, shape-based modelling approaches and a number of available control schemes for operation in unknown environments are presented, which hopefully motivates more scholars to start working on snake robots. Some ideas about future research plans are also proposed, which can be helpful for fabricating a snake robot equipped with the necessary features for operation in a real-world environment.

Publisher

IGI Global

Reference77 articles.

1. Dynamical analysis of sidewinding locomotion by a snake-like robot

2. Snake-like locomotion: integration of geometry and kineto-statics

3. Quantitative analysis of the speed of snakes as a function of peg spacing.;S.Bennet;The Journal of Experimental Biology,1974

4. Benz, M. J., Kovalev, A. E., & Gorb, S. N. (2012). Anisotropic frictional properties in snakes. SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring.

5. Rectilinear Locomotion in Snakes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3