International Diversified Portfolio Optimization With Artificial Neural Networks

Author:

Bayramoglu Mehmet Fatih1,Basarir Cagatay2

Affiliation:

1. Bulent Ecevit University, Turkey

2. Bandirma Onyedi Eylul University, Turkey

Abstract

Investing in developed markets offers investors the opportunity to diversify internationally by investing in foreign firms. In other words, it provides the possibility of reducing systematic risk. For this reason, investors are very interested in developed markets. However, developed are more efficient than emerging markets, so the risk and return can be low in these markets. For this reason, developed market investors often use machine learning techniques to increase their gains while reducing their risks. In this chapter, artificial neural networks which is one of the machine learning techniques have been tested to improve internationally diversified portfolio performance. Also, the results of ANNs were compared with the performances of traditional portfolios and the benchmark portfolio. The portfolios are derived from the data of 16 foreign companies quoted on NYSE by ANNs, and they are invested for 30 trading days. According to the results, portfolio derived by ANNs gained 10.30% return, while traditional portfolios gained 5.98% return.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3