Abstract
Ultimately, a solid photocathode is advantageous over gaseous and liquid photocathodes. Gaseous detectors with solid photocathodes are simpler to manufacture and have better time resolution than detectors filled with photosensitive gases. They should be able to operate at high gas gains and detect single photoelectrons. Finally, compared to vacuum photomultipliers they have little sensitivity to magnetic fields and can measure the coordinate of photon conversion and can be made with large areas and arbitrary shapes. All this proves that gaseous photomultipliers with solid photocathodes open a new page in photosensitive detection technique. We will here review the early development of solid photocathodes, and the road towards the modern photocathodes which have revolutionized the photosensitive detector technology.