A New Contextual Influencer User Measure to Improve the Accuracy of Recommender System

Author:

Jallouli Maryam1,Lajmi Sonia2,Amous Ikram1

Affiliation:

1. Miracl Laboratory, Technopole of Sfax, Sfax University, Tunisia

2. Miracl Laboratory, Technopole of Sfax, Sfax University, Tunisia & Al Baha University, Al Baha, Saudi Arabia

Abstract

In the last decade, social-based recommender systems have become the best way to resolve a user's cold start problem. In fact, it enriches the user's model by adding additional information provided from his social network. Most of those approaches are based on a collaborative filtering and compute similarities between the users. The authors' preliminary objective in this work is to propose an innovative context aware metric between users (called contextual influencer user). These new similarities are called C-COS, C-PCC and C-MSD, where C refers to the category. The contextual influencer user model is integrated into a social based recommendation system. The category of the items is considered as the most pertinent context element. The authors' proposal is implemented and tested within the food dataset. The experimentation proved that the contextual influencer user measure achieves 0.873, 0.874, and 0.882 in terms of Mean Absolute Error (MAE) corresponding to C-cos, C-pcc and C-msd, respectively. The experimental results showed that their model outperforms several existing methods.

Publisher

IGI Global

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contextualized Recommendation Model Based Socio-Environmental Factors;International Database Engineered Applications Symposium Conference;2023-05-05

2. REMOVE: REcommendation Model based on sOcio-enVironmental contExt;Multimedia Tools and Applications;2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3