Lower-Limb Rehabilitation at Home

Author:

Yean Seanglidet1,Lee Bu Sung1,Yeo Chai Kiat1ORCID

Affiliation:

1. Nanyang Technological University, Singapore

Abstract

Aging causes loss of muscle strength, especially on the lower limbs, resulting in a higher risk of injuries during functional activities. To regain mobility and strength from injuries, physiotherapy prescribes rehabilitation exercise to assist the patients' recovery. In this article, the authors survey the existing work in exercise assessment and state identification which contributes to innovating the biofeedback for patient home guidance. The initial study on a machine-learning-based model is proposed to identify the 4-state motion of rehabilitation exercise using wearable sensors on the lower limbs. The study analyses the impact of the feature extracted from the sensor signals while classifying using the linear kernel of the support vector machine method. The evaluation results show that the method has an average accuracy of 95.83% using the raw sensor signal, which has more impact than the sensor fused Euler and joint angles in the state prediction model. This study will both enable real-time biofeedback and provide complementary support to clinical assessment and performance tracking.

Publisher

IGI Global

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3