Simulating Spiking Neural P Systems Without Delays Using GPUs

Author:

Cabarle F.1,Adorna H.1,Martínez-del-Amor M. A.2

Affiliation:

1. University of the Philippines Diliman, Philippines

2. University of Seville, Spain

Abstract

In this paper, the authors discuss the simulation of a P system variant known as Spiking Neural P systems (SNP systems), using Graphics Processing Units (GPUs). GPUs are well suited for highly parallel computations because of their intentional and massively parallel architecture. General purpose GPU computing has seen the use of GPUs for computationally intensive applications, not just in graphics and video processing. P systems, including SNP systems, are maximally parallel computing models taking inspiration from the functioning and dynamics of a living cell. In particular, SNP systems take inspiration from a type of cell known as a neuron. The nature of SNP systems allowed for their representation as matrices, which is an elegant step toward their simulation on GPUs. In this paper, the simulation algorithms, design considerations, and implementation are presented. Finally, simulation results, observations, and analyses using a simple but non-trivial SNP system as an example are discussed, including recommendations for future work.

Publisher

IGI Global

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GPU implementation of evolving spiking neural P systems;Neurocomputing;2022-09

2. Spiking neural P systems and their semantics in Haskell;Natural Computing;2022-08-10

3. Dendrite P Systems Toolbox: Representation, Algorithms and Simulators;International Journal of Neural Systems;2020-11-16

4. The Implementation of Membrane Clustering Algorithm Based on FPGA;Bio-inspired Computing – Theories and Applications;2016

5. Matrix Representation of Parallel Computation for Spiking Neural P Systems;Bio-inspired Computing – Theories and Applications;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3