Multi-Objective Evolutionary Algorithm NSGA-II for Variables Selection in Multivariate Calibration Problems

Author:

Vitor de Lucena Daniel1,Woerle de Lima Telma1,Soares Anderson da Silva1,Coelho Clarimar José2

Affiliation:

1. Informatics Institute, Universidade Federal de Goiás (UFG), Goiânia, Brazil

2. Departament of Computation, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil

Abstract

This paper proposes a multiobjective formulation for variable selection in multivariate calibration problems in order to improve the generalization ability of the calibration model. The authors applied this proposed formulation in the multiobjective genetic algorithm NSGA-II. The formulation consists in two conflicting objectives: minimize the prediction error and minimize the number of selected variables for multiple linear regression. These objectives are conflicting because, when the number of variables is reduced the prediction error increases. As study of case is used the wheat data set obtained by NIR spectrometry with the objective for determining a variable subgroup with information about protein concentration. The results of traditional techniques of multivariate calibration as the partial least square and successive projection algorithm for multiple linear regression are presented for comparisons. The obtained results showed that the proposed approach obtained better results when compared with a mono-objective evolutionary algorithm and with traditional techniques of multivariate calibration.

Publisher

IGI Global

Reference27 articles.

1. Abdi, H. (2003). Partial least square regression (PLS regression).Encyclopedia for research methods for the social sciences, 792-795.

2. Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: A Practical Guide. John Wiley & Sons, INC. New York.

3. Chemometrics

4. Performance of some variable selection methods when multicollinearity is present

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3