Affiliation:
1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Abstract
The ability of the 1-n-1 complex-valued neural network to learn 2D affine transformations has been applied to the estimation of optical flows and the generation of fractal images. The complex-valued neural network has the adaptability and the generalization ability as inherent nature. This is the most different point between the ability of the 1-n-1 complex-valued neural network to learn 2D affine transformations and the standard techniques for 2D affine transformations such as the Fourier descriptor. It is important to clarify the properties of complex-valued neural networks in order to accelerate its practical applications more and more. In this paper, first, the generalization ability of the 1-n-1 complex-valued neural network which has learned complicated rotations on a 2D plane is examined experimentally and analytically. Next, the behavior of the 1-n-1 complex-valued neural network that has learned a transformation on the Steiner circles is demonstrated, and the relationship the values of the complex-valued weights after training and a linear transformation related to the Steiner circles is clarified via computer simulations. Furthermore, the relationship the weight values of the 1-n-1 complex-valued neural network learned 2D affine transformations and the learning patterns used is elucidated. These research results make it possible to solve complicated problems more simply and efficiently with 1-n-1 complex-valued neural networks. As a matter of fact, an application of the 1-n-1 type complex-valued neural network to an associative memory is presented.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献