Pillars of Ontology Treatment in the Medical Domain

Author:

Sonntag Daniel1,Wennerberg Pinar2,Buitelaar Paul3,Zillner Sonja4

Affiliation:

1. DFKI - German Research Center for Artificial Intelligence, Germany

2. Externer Dienstleister der Siemens AG, Germany

3. DERI - National University of Ireland, Galway, Ireland

4. Siemens AG, Germany

Abstract

In this chapter the authors describe the three pillars of ontology treatment in the medical domain in a comprehensive case study within the large-scale THESEUS MEDICO project. MEDICO addresses the need for advanced semantic technologies in medical image and patient data search. The objective is to enable a seamless integration of medical images and different user applications by providing direct access to image semantics. Semantic image retrieval should provide the basis for the help in clinical decision support and computer aided diagnosis. During the course of lymphoma diagnosis and continual treatment, image data is produced several times using different image modalities. After semantic annotation, the images need to be integrated with medical (textual) data repositories and ontologies. They build upon the three pillars of knowledge engineering, ontology mediation and alignment, and ontology population and learning to achieve the objectives of the MEDICO project.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

Reference31 articles.

1. Bernstein, P. A., Melnik, S., & Churchill, J. E. (2006). Incremental schema matching. U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, & Y.-K. Kim (Eds.), Proceedings of the 32nd International Conference on Very Large Data Bases (Vol. 32) (pp. 1167-1170). Seoul, Korea. PA: VLDB Endowment.

2. Buitelaar, P., Wennerberg, P. O., & Zillner, S. (2008). Statistical term profiling for query pattern mining. In D. Demner-Fushman, S. Ananiadou, K. B. Cohen, J. Pestian, J. Tsujii, & B. Webber (Eds.), ACL BioNLP Workshop Current Trends in Biomedical Natural Language Processing (p.114). Columbus, Ohio. PA: Association for Computational Linguistics.

3. Chalupsky, H. (2000). Ontomorph. A translation system for symbolic knowledge. In A.G. Cohn, F. Giunchiglia, & B. Selman (Eds.), 7th Intl. Conf. on Principles of Knowledge Representation and Reasoning KR'2000 (pp. 471-482). Breckenridge, Colorado. PA: Morgan Kaufmann Publishers.

4. Automatic knowledge acquisition from MEDLINE 32(2);J. J.Cimino;Methods of Information in Medicine,1993

5. de Bruijn, J., Ehrig, M., Feier, C., Martín-Recuerda, F., Scharffe, F., & Weiten, M. (2006). Ontology mediation, merging and aligning. In J. Davies R. Studer, & P. Warren (Eds.), Semantic Web Technologies: Trends and Research in Ontology-based Systems. PA: Wiley.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3