Restoration of Coherent Population Movement from Noise-Induced Chaos in the Chemotaxis of E. Coli

Author:

Patnaik Pratap R.1

Affiliation:

1. Department of Chemical Engineering, C. V. Raman College of Engineering, Bhubaneswar-752-054, Odisha, India

Abstract

Bacteria navigating in a chemically guided manner are under the impact of noise from at least three sources – inside the cells, at the binding sites between chemoattractants in the environment and corresponding receptors of the cells, and in the environment itself. For Escherichia coli as model system, compounded effects of these sources of noise were investigated recently by using the fractal dimensions of the trajectories of the cells as an index of the nature of population motility. It was observed that environmental noise can drive synchronized movement of a population toward a chemoattractant into stochastic chaos. Those results have been used here to explore the effectiveness of different kinds of noise filters in restoring coherent motion of the cells. An auto-associative neural filter was the best, followed by the extended Kalman filter. The performance of either filter depended on the relative rates of motion of the bacteria and the chemoattractant, and on whether the responses of the cells to fluctuations in the external chemoattractant was non-adaptive or adaptive. The results establish: (a) the validity and usefulness of fractal indexes to characterize noise-affected chemotaxis, (b) the significance of the effect of environmental noise on chemotactic motility, and (c) the effectiveness of a neural filter in rescuing coherent population movement from noise-induced chaos.

Publisher

IGI Global

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3