A Hybrid Meta-Heuristic Approach for QoS-Aware Cloud Service Composition

Author:

Bhushan S. Bharath1,Reddy Pradeep C. H.2

Affiliation:

1. SITE, VIT University, Vellore, India

2. VIT-AP University, Amaravati, India

Abstract

Cloud is evolving as an outstanding platform to deliver cloud services on a pay-as-you-go basis. The selection and composition of cloud services based on QoS criteria is formulated as NP hard optimization problem. Traditionally, many optimization techniques are applied to solve it, but it suffers from slow convergence speed, large number of calculations, and falling into local optimum. This article proposes a hybrid particle swarm optimization (HPSO) technique that combines particle swarm optimization (PSO) and fruit fly (FOA) to perform the evolutionary search process. The following determines a pareto optimal service set which is non-dominated solution set as input to the proposed HPSO. In the proposed HPSO, the parameters such as position and velocity are redefined, and while updating, the smell operator of fruit fly is used to overcome the prematurity of PSO. The FOA enhances the convergence speed with good fitness value. The experimental results show that the proposed HPSO outperforms the simple particle swarm optimization in terms of fitness value, execution time, and error rate.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Evaluation of the Improved Eagle Strategy Model in the Internet of Things;2024-09-09

2. A Multi-Criteria Allocation Strategy for Provisioning Cloud Resources;International Journal of Systems and Service-Oriented Engineering;2022-05-23

3. PPDRL: A Pretraining-and-Policy-Based Deep Reinforcement Learning Approach for QoS-Aware Service Composition;Security and Communication Networks;2022-04-22

4. Distributed Intelligence Platform to the Edge Computing;Research Anthology on Edge Computing Protocols, Applications, and Integration;2022-04-01

5. Cooperative multi-population Harris Hawks optimization for many-objective optimization;Complex & Intelligent Systems;2022-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3