Recommender System with Composite Social Trust Networks

Author:

Chen Chaochao1,Zheng Xiaolin1,Zhu Mengying1,Xiao Litao1

Affiliation:

1. College of Computer Science, Zhejiang University, Hangzhou, China

Abstract

The development of online social networks has increased the importance of social recommendations. Social recommender systems are based on the idea that users who are linked in a social trust network tend to share similar interests. Thus, how to build an accurate social trust network will greatly affect recommendation performance. However, existing trust-based recommender approaches do not fully utilize social information to build rational trust networks and thus have low prediction accuracy and slow convergence speed. In this paper, the authors propose a composite trust-based probabilistic matrix factorization model, which is mainly composed of two steps: In step 1, the existing explicit trust network and the inferred implicit trust network are used to build a composite trust network. In step 2, the composite trust network is used to minimize both the rating difference and the trust difference between the true value and the inferred value. Experiments based on an Epinions dataset show that the authors' approach has significantly higher prediction accuracy and convergence speed than traditional collaborative filtering technology and the state-of-the-art trust-based recommendation approaches.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Different Trust Metrics of User-User Trust-Based Recommendation System;Computer Science;2022-10-02

2. Influencer is the New Recommender: insights for Theorising Social Recommender Systems;Information Systems Frontiers;2022-04-23

3. A Scientometric Analysis of Transient Patterns in Recommender System with Soft Computing Techniques;Computación y Sistemas;2021-02-15

4. Semi-supervised Learning Meets Factorization;ACM Transactions on Knowledge Discovery from Data;2018-12-31

5. Distributed Collaborative Hashing and Its Applications in Ant Financial;Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining;2018-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3