Affiliation:
1. Japan Advanced Institute of Science and Technology, Japan
2. Suranaree University of Technology, Thailand
Abstract
This study proposes a methodology that integrates the epsilon constraint method (EC) and artificial neural network (ANN) to determine shelter location-allocation. Since shelter location-allocation is a critical part of disaster response stage, fast decision-making is very important. A multi-objective optimization model is formulated to simultaneously minimize total cost and minimize total evacuation time. The proposed model is solved by EC because it generates the optimal solutions without intervention of decision-makers during the solution process. However, EC requires intensive computational time, especially when dealing with large-scale data. Thus, ANN is combined with EC to facilitate prompt decision-making and address the complexity. Herein, ANN is supervised by the optimal solutions generated by EC. The applicability of the proposed methodology is demonstrated through a case study of shelter allocation in response to flooding in Surat Thani, Thailand. It is plausible to use this proposed methodology to improve disaster response for the benefit of victims and decision-makers.
Subject
Artificial Intelligence,Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献