Affiliation:
1. Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing, China
Abstract
The emerging cost-effective depth sensors have facilitated the action recognition task significantly. In this paper, the authors address the action recognition problem using depth video sequences combining three discriminative features. More specifically, the authors generate three Depth Motion Maps (DMMs) over the entire video sequence corresponding to the front, side, and top projection views. Contourlet-based Histogram of Oriented Gradients (CT-HOG), Local Binary Patterns (LBP), and Edge Oriented Histograms (EOH) are then computed from the DMMs. To merge these features, the authors consider decision-level fusion, where a soft decision-fusion rule, Logarithmic Opinion Pool (LOGP), is used to combine the classification outcomes from multiple classifiers each with an individual set of features. Experimental results on two datasets reveal that the fusion scheme achieves superior action recognition performance over the situations when using each feature individually.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献