Generating Personalized Explanations for Recommender Systems Using a Knowledge Base

Author:

Chen Yuhao1ORCID,Luo Shi-Jun1,Han Hyoil2,Miyazaki Jun1,Saldanha Alfrin Letus2

Affiliation:

1. Tokyo Institute of Technology, Japan

2. Illinois State University, USA

Abstract

In the last decade, we have seen an increase in the need for interpretable recommendations. Explaining why a product is recommended to a user increases user trust and makes the recommendations more acceptable. The authors propose a personalized explanation generation system, PEREXGEN (personalized explanation generation) that generates personalized explanations for recommender systems using a model-agnostic approach. The proposed model consists of a recommender and an explanation module. Since they implement a model-agnostic approach to generate personalized explanations, they focus more on the explanation module. The explanation module consists of a task-specialized item knowledge graph (TSI-KG) generation from a knowledge base and an explanation generation component. They employ the MovieLens and Wikidata datasets and evaluate the proposed system's model-agnostic properties using conventional and state-of-the-art recommender systems. The user study shows that PEREXGEN generates more persuasive and natural explanations.

Publisher

IGI Global

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Extraction of Effective Relations in Knowledge Graph for a Recommendation Explanation System;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

2. Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS’22);Sixteenth ACM Conference on Recommender Systems;2022-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3