Affiliation:
1. Tokyo Institute of Technology, Japan
2. Illinois State University, USA
Abstract
In the last decade, we have seen an increase in the need for interpretable recommendations. Explaining why a product is recommended to a user increases user trust and makes the recommendations more acceptable. The authors propose a personalized explanation generation system, PEREXGEN (personalized explanation generation) that generates personalized explanations for recommender systems using a model-agnostic approach. The proposed model consists of a recommender and an explanation module. Since they implement a model-agnostic approach to generate personalized explanations, they focus more on the explanation module. The explanation module consists of a task-specialized item knowledge graph (TSI-KG) generation from a knowledge base and an explanation generation component. They employ the MovieLens and Wikidata datasets and evaluate the proposed system's model-agnostic properties using conventional and state-of-the-art recommender systems. The user study shows that PEREXGEN generates more persuasive and natural explanations.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献