VCGERG
Author:
Affiliation:
1. Beijing University of Civil Engineering and Architecture, China
2. National Computer Network Emergency Response Technical Team, China
Abstract
Vulnerability can lead to data loss, privacy leakage and financial loss. Accurate detection and identification of vulnerabilities is essential to prevent information leakage and APT attacks. This paper explores the possibility of digging the valuable information in vulnerability reports deeply. We propose a new model, VCGERG, which products a graph using key information from vulnerability reports and embeds the graph into the vector space using a keywords-LINE graph embedding algorithm based on the attention of neighboring nodes. VCGERG model uses the OVR random forest algorithm to classify vulnerabilities. Our model can get the complicated local and global information of the graph in large-scale dataset and achieve better results. In order to verify the effectiveness of our model, it is evaluated on many experiments. Compared with other models, our method has a higher accuracy rate of 0.975.
Publisher
IGI Global
Reference29 articles.
1. Is blind image steganalysis practical using feature-based classification?;A.Aljarf;Multimedia Tools and Applications,2023
2. LDA Categorization of Security Bug Reports in Chromium Projects
3. Improving Interpretability for Cyber Vulnerability Assessment Using Focus and Context Visualizations
4. A survey on predictions of cyber-attacks utilizing real-time twitter tracing recognition
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3