Experimental Study of Swarm Migration Algorithms on Stochastic and Global Optimisation Problem

Author:

Oppong Stephen Opoku1ORCID,Ghansah Benjamin1ORCID,Baidoo Evans2,Apeanti Wilson Osafo1,Essel Daniel Danso1

Affiliation:

1. University of Education, Winneba, Ghana

2. Hohai University, China

Abstract

Complex computational problems are occurrences in our daily lives that needs to be analysed effectively in order to make meaningful and informed decision. This study performs empirical analysis into the performance of six optimisation algorithms based on swarm intelligence on nine well known stochastic and global optimisation problems, with the aim of identifying a technique that returns an optimum output on some selected benchmark techniques. Extensive experiments show that, Multi-Swarm and Pigeon inspired optimisation algorithm outperformed Particle Swarm, Firefly and Evolutionary optimizations in both convergence speed and global solution. The algorithms adopted in this paper gives an indication of which algorithmic solution presents optimal results for a problem in terms of quality of performance, precision and efficiency.

Publisher

IGI Global

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3