Comparing LR, GP, BPN, RBF and SVR for Self-Learning Pattern Matching in WSN Indoor Localization

Author:

Chang Ray-I1,Chuang Chi-Cheng1

Affiliation:

1. National Taiwan University, Taiwan

Abstract

It is a challenging issue to apply WSN (Wireless Sensor Network) to achieve accurate location information. PM (Pattern Matching), known as one of the most famous localization methods, has the drawback of requiring high initialization effort to predict/train MF (Matching Function). In this paper, the authors propose SPM (Self-learning PM) to improve not only the localization accuracy but also the initialization effort of PM. SPM applies a divide-and-conquer self-learning scheme to reduce the number of training patterns in training. Additionally, it introduces a Bayesian filtering scheme to remove the noise signal caused by multipath effects so as to enhance localization accuracy accordingly. This paper applies different training methods (linear regression, Gaussian process, backpropagation network, radial basis function, and support vector regression) to evaluate the performances of SPM and PM in a complicated indoor environment. Experiments show that SPM is better than PM for all training methods applied. SPM can use up to 72% fewer training patterns than PM to achieve the same localization accuracy. If the same number of training patterns is utilized, SPM can achieve up to 58% higher localization accuracy than PM.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3