Affiliation:
1. Lovely Professional University, Jalandhar, India
Abstract
E-learning and online education has made great improvements in the recent past. It has shifted the teaching paradigm from conventional classroom learning to dynamic web based learning. Due to this, a dynamic learning material has been delivered to learners, instead of static content, according to their skills, needs and preferences. In this article, the authors have classified eight different types of student learning attributes based on National Centre for Biotechnical Information (NCBI) e-learning database. The eight types of attributes are Anxiety (A), Personality (P), Learning style (L), Cognitive style (C), Grades from previous sem (GP), Motivation (M), Study level (SL) and Student prior knowledge (SPK). In this article the authors have proposed an approach which uses principal components of student learning attributes and have later independently classified these attributes using feed forward neural network (NN) and Least Square –Support Vector Machine (LS-SVM).
Subject
Computer Science Applications,Education
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献