Affiliation:
1. Fordham University, New York City, USA
2. NYU School of Medicine, New York City, USA
Abstract
A DNA microarray can measure the expression of thousands of genes simultaneously, and this enables us to study the molecular pathways underlying Age-related Macular Degeneration. Previous studies have not determined which genes are responsible for the process of AMD. The authors address this deficiency by applying modern data mining and machine learning feature selection algorithms to the AMD microarray dataset. In this paper four methods are utilized to perform feature selection: Naïve Bayes, Random Forest, Random Lasso, and Ensemble Feature Selection. Functional Annotation of 20 final selected genes suggests that most of them are responsible for signal transduction in an individual cell or between cells. The top seven genes, five protein-coding genes and two non-coding RNAs, are explored from their signaling pathways, functional interactions and associations with retinal pigment epithelium cells. The authors conclude that Pten/PI3K/Akt pathway, NF-kappaB pathway, JNK cascade, Non-canonical Wnt Pathway, and two biological processes of cilia are likely to play important roles in AMD pathogenesis.
Subject
Multidisciplinary,General Engineering,General Business, Management and Accounting,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Use of Machine Learning Algorithms in the Classification of Sound;International Journal of Service Science, Management, Engineering, and Technology;2022-04-08
2. Withdrawal Prediction Framework in Virtual Learning Environment;International Journal of Service Science, Management, Engineering, and Technology;2020-07