Big Data Analytics Artefact for Outcome-Based Funding Prediction in South African Public Universities

Author:

Segooa Anna M.1,Kalema Billy M.2ORCID

Affiliation:

1. Tshwane University of Technology, South Africa

2. University of Mpumalanga, South Africa

Abstract

This study designed a big data analytics artefact for the prediction of outcome-based funding (OBF) in South African public universities. Universities in South Africa (SA) are subsidized based on their performance known as OBF that is measured depending on the outputs from teaching, research, and engagements. OBF metrics are well documented; however, public universities fail to achieve the targets for higher scores. These failures are attributed to poor decision-making resulting from limited analysis of the voluminous data generated. This study used design science methodology to develop a big data analytics artefact for prediction of OBF outcomes. The artefact was evaluated for prediction using machine learning training and tested with data collected from South African universities. Findings indicated that for better prediction using big data analytics, system characteristics, size, structure, top management support, market, infrastructure, and government regulations factors play a significant role.

Publisher

IGI Global

Subject

Multidisciplinary,General Engineering,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3