A Hybrid Between TOA and Lévy Flight Trajectory for Solving Different Cluster Problems

Author:

Devarakonda Nagaraju1ORCID,Saidala Ravi Kumar2ORCID,Kamarajugadda Raviteja3

Affiliation:

1. VIT-AP University, India

2. Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India

3. LBR College of Engineering, India

Abstract

In data analysis applications for extraction of useful knowledge, clustering plays an important role. The major shortcoming of traditional clustering algorithms is exhibiting poor performance in solving complex data cluster problems. This research paper introduces a novel hybrid optimization technique based clustering approach. This paper is designed with two main objectives: designing efficient function optimization algorithm and developing advanced data clustering approach. In achieving the first objective, the standard TOA is first enhanced by hybridizing with Lévy flight trajectory and benchmarked on 23 functions. A new clustering approach is developed by conjoining k-means algorithm and Lévy flight TOA. Tested the numerical complexity of the proposed novel clustering approach on 10 UCI clustering datasets and 4 web document cluster problems. Conducted several simulation experiments and done an analysis of the results. The obtained graphical and statistical analysis reveals that the proposed novel clustering approach yields better quality clusters.

Publisher

IGI Global

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3