Many-Objective Particle Swarm Optimization Algorithm Based on New Fitness Allocation and Multiple Cooperative Strategies

Author:

Yu Weiwei1,Zhang Li1,Xie Chengwang2

Affiliation:

1. Beihang University, China

2. Nanning Normal University, China

Abstract

Many-objective optimization problems (MaOPs) refer to those multi-objective problems (MOPs) withmore than three objectives. In order to solve MaOPs, a multi-objective particle swarm optimization algorithm based on new fitness assignment and multi cooperation strategy(FAMSHMPSO) is proposed. Firstly, this paper proposes a new fitness allocation method based on fuzzy information theory to enhance the convergence of the algorithm. Then a new multi criteria mutation strategy is introduced to disturb the population and improve the diversity of the algorithm. Finally, the external files are maintained by the three-point shortest path method, which improves the quality of the solution. The performance of FAMSHMPSO algorithm is evaluated by evaluating the mean value, standard deviation and IGD+ index of the target value on dtlz test function set of different targets of FAMSHMPSO algorithm and other five representative multi-objective evolutionary algorithms. The experimental results show that FAMSHMPSO algorithm has obvious performance advantages in convergence, diversity and robustness.

Publisher

IGI Global

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3