Classification of Gene Expression Data Using Feature Selection Based on Type Combination Approach Model With Advanced Feature Selection Technology

Author:

Siddesh G. M. 1,Gururaj T. 1

Affiliation:

1. Ramaiah Institute of Technology, Bengaluru, India

Abstract

A key step in addressing the classification issue was the selection of genes for removing redundant and irrelevant genes. The proposed Type Combination Approach –Feature Selection(TCA-FS) model uses the efficient feature selection methods, and the classification accuracy can be enhanced. The three classifiers such as K Nearest Neighbour(KNN), Support Vector Machine(SVM) and Random Forest(RF) are selected for evaluating the opted feature selection methods, and prediction accuracy. The effects of three new approaches for feature selection are Improved Recursive Feature Elimination (IRFE), Revised Maximum Information co-efficient (RMIC), as well as Upgraded Masked Painter (UMP), are analysed. These three proposed techniques are compared with existing techniques and are validated with (i) Stability determination test. (ii) Classification accuracy. (iii) Error rates of three proposed techniques are analysed. Due to the selection of proper threshold on classification, the proposed TCA-FS method provides a higher accuracy compared to the existing system.

Publisher

IGI Global

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3