Computational Analysis of Vertebral Body for Compression Fracture Using Texture and Shape Features

Author:

Arpitha Adela1,Rangarajan Lalitha1

Affiliation:

1. University of Mysore, India

Abstract

The primary goal in this paper is to automate radiological measurements of Vertebral Body (VB) in Magnetic Resonance Imaging (MRI) spinal scans. It starts by preprocessing the images, then detect and localize the VB regions, next segment and label VBs and finally classify each VB into three cases as being normal or fractured in case 1, benign or malignant in case 2 and normal, benign or malignant in case 3. The task is accomplished by extracting and combining distinct features of VB such as boundary, gray levels, shape and texture features using various Machine Learning techniques. The class balance deficit dataset towards normal and fractures is balanced by data augmentation which provides an enriched dataset for the learning system to perform precise differentiation between classes. On a clinical spine dataset, the method is tested and validated on 535 VBs for segmentation attaining an average accuracy 94.59% and on 315 VBs for classification with an average accuracy of 96.07% for case 1, 93.23% for case 2 and 92.3% for case 3.

Publisher

IGI Global

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3