Improved State Space Model Using Iterative PSO for Unsteady Aerodynamic System at High AOA

Author:

Luo Guiming1,Zhao Boxu1,Jiang Mengqi1

Affiliation:

1. School of Software, Tsinghua University, Beijing, China

Abstract

Due to the complex hysteresis phenomenon at a high angle of attack (AOA), modeling of unsteady aerodynamic coefficients usually encounters the problem that the parameter vector is too long and the simulation accuracy is not high. The article proposes an improved state-space model based on aerodynamics, applying Fourier analysis and the principal component analysis for model optimization. The likelihood criterion and GOIPSO (Iterative Particle Swarm Optimization Based on Genetic Operator) algorithm are established under the Gaussian assumption. The iterative PSO, into which the genetic algorithm's operators are integrated to calculate the optimization of the likelihood function, greatly reduced the probability of local optimization. Experiments show that the algorithm and model proposed in this paper greatly improves the model-fitting accuracy.

Publisher

IGI Global

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3