Deep Web Information Retrieval Process

Author:

Sharma Dilip Kumar1,Sharma A. K.2

Affiliation:

1. G.L.A. Institute of Technology and Management, Mathura, U. P., India

2. YMCA University of Science and Technology, Faridabad, Haryana, India

Abstract

Web crawlers specialize in downloading web content and analyzing and indexing from surface web, consisting of interlinked HTML pages. Web crawlers have limitations if the data is behind the query interface. Response depends on the querying party’s context in order to engage in dialogue and negotiate for the information. In this article, the authors discuss deep web searching techniques. A survey of technical literature on deep web searching contributes to the development of a general framework. Existing frameworks and mechanisms of present web crawlers are taxonomically classified into four steps and analyzed to find limitations in searching the deep web.

Publisher

IGI Global

Subject

General Computer Science

Reference53 articles.

1. Akilandeswari, J., & Gopalan, N. P. (2008). An Architectural Framework of a Crawler for Locating Deep Web Repositories Using Learning Multi-agent Systems. In Proceedings of the 2008 Third International Conference on Internet and Web Applications and Services (pp.558-562).

2. ANSI/NISO Z39. 50. (2003). Information Retrieval: Application Service Definition and Protocol Specification. Retrieved from http://www.niso.org/standards/standard_detail.cfm?std_id=465.

3. Arlotta, L., Crescenzi, V., Mecca, G., et al. (2003). Automatic annotation of data extracted from large Web sites. In Proceedings of the 6th International Workshop on Web and Databases, San Diego, CA (pp. 7-12).

4. A Framework for Domain Specific Interface Mapper (DSIM).;K. K.Bhatia;International Journal of Computer Science and Network Security,2008

5. BrightPlanet.com LLC. (2000, July). White Paper: The Deep Web: Surfacing Hidden Value.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information Retrieval in the Hidden Web;Advances in Data Mining and Database Management;2021

2. Practical k-agents search algorithm towards information retrieval in complex networks;World Wide Web;2018-01-23

3. TempClass;Advances in Computer and Electrical Engineering;2018

4. Search Engine;The Dark Web;2018

5. A Novel Architecture for Deep Web Crawler;The Dark Web;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3