An Experimental Study for the Effect of Stop Words Elimination for Arabic Text Classification Algorithms

Author:

Al-Shargabi Bassam1,Olayah Fekry1,Romimah Waseem AL2

Affiliation:

1. Isra University, Jordan

2. University of Science and Technology, Yemen

Abstract

In this paper, an experimental study was conducted on three techniques for Arabic text classification. These techniques are Support Vector Machine (SVM) with Sequential Minimal Optimization (SMO), Naïve Bayesian (NB), and J48. The paper assesses the accuracy for each classifier and determines which classifier is more accurate for Arabic text classification based on stop words elimination. The accuracy for each classifier is measured by Percentage split method (holdout), and K-fold cross validation methods, along with the time needed to classify Arabic text. The results show that the SMO classifier achieves the highest accuracy and the lowest error rate, and shows that the time needed to build the SMO model is much lower compared to other classification techniques.

Publisher

IGI Global

Subject

General Computer Science

Reference14 articles.

1. Effect of stop words removing for Arabic information retrieval. International Journal of Computing &;A.Abo Alkhair;Information Science,2006

2. Al-Harbi, S., Almuhareb, A., Al-Thubaity, A., Khorsheed, M. S., & Al-Rajeh, A. (2008). Automatic Arabic text classification. In Proceedings of the 9th International Conference on the Statistical Analysis of Textual Data, Lyon, France.

3. Al-Shalabi, R., Kanaan, G., Jaam, J. M., Hasnah, A., & Hilat, E. (2004). Stop-word removal algorithm for Arabic language. In Proceedings of 1st International Conference on Information & Communication Technologies: From Theory to Applications, Damascus, Syria (pp. 545-550).

4. El-Kourdi, M., Bensaid, A., & Rachidi, T. (2004). Automatic Arabic document categorization based on the naive Bayes algorithm. In Proceedings of the Workshop on Computational Approaches to Arabic Script Based Languages, Geneva, Switzerland (pp. 51-58).

5. El-Kourdi, M., Bensaid, A., & Rachidi, T. (2004, August). Automatic Arabic document categorization based on the Naïve Bayes algorithm. In Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Switzerland.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3