Prediction of the Stock Market From Linguistic Phrases

Author:

Eachempati Prajwal1,Srivastava Praveen Ranjan2ORCID

Affiliation:

1. Ernst and Young Limited, Dublin, Ireland

2. Indian Institute of Management, Rohtak, India

Abstract

Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an exciting area for research with deep learning techniques emerging to understand the market and its future direction. The paper develops two FINBERT deep neural network models pre-trained on the financial phrase dataset, the first one to extract sentiment from the NSE market news. The second model is adopted to predict the stock market movement of NSE with the above sentiment, historical stock prices, return on investment, and risk as predictors. The accuracy is compared with RNN and LSTM and baseline machine learning classifiers like naïve bayes and support vector machine (SVM). The accuracy of the FINBERT model is found to out-perform the deep learning algorithms and above baseline machine learning classifiers thus justifying the importance of the FINBERT model in stock market prediction.

Publisher

IGI Global

Subject

Hardware and Architecture,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3