An Item Response Theory Approach to Enhance Peer Assessment Effectiveness in Massive Open Online Courses

Author:

Nakayama Minoru1ORCID,Sciarrone Filippo2,Temperini Marco3ORCID,Uto Masaki4ORCID

Affiliation:

1. Tokyo Institute of Technology, Japan

2. Universitas Mercatorum, Italy

3. Sapienza University of Rome, Italy

4. University of Electro-Communications, Japan

Abstract

Massive open on-line courses (MOOCs) are effective and flexible resources to educate, train, and empower populations. Peer assessment (PA) provides a powerful pedagogical strategy to support educational activities and foster learners' success, also where a huge number of learners is involved. Item response theory (IRT) can model students' features, such as the skill to accomplish a task, and the capability to mark tasks. In this paper the authors investigate the applicability of IRT models to PA, in the learning environments of MOOCs. The main goal is to evaluate the relationships between some students' IRT parameters (ability, strictness) and some PA parameters (number of graders per task, and rating scale). The authors use a data-set simulating a large class (1,000 peers), built by a Gaussian distribution of the students' skill, to accomplish a task. The IRT analysis of the PA data allow to say that the best estimate for peers' ability is when 15 raters per task are used, with a [1,10] rating scale.

Publisher

IGI Global

Subject

Computer Networks and Communications,Computer Science Applications,Education

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3