An Efficient Machine Learning-Based Cluster Analysis Mechanism for IoT Data
Author:
Affiliation:
1. Vignan's Foundation for Science, Technology, and Research, India
Abstract
The prevailing developments in internet of things (IoT) and other sensor technologies such as cyber physical systems (CPS) and wireless sensor networks (WSNs), the huge amount of sensor data has been generating from various IoT devices and protocols. Making predictions and finding density patterns over such data is a challenging task. In order to find the density patterns and make analysis over real-time dynamic data, the machine learning (ML) based algorithms are widely used to deal with the IoT data. In this article, the authors proposed an efficient ML-based cluster analysis mechanism for finding density patterns in IoT dynamic data effectively. In this proposed mechanism, the k-means and GMM models are used for clustering data analysis. The proposed mechanism has been implemented on ThingSpeak Cloud platform for analysing the data efficiently on daily and weekly basis. Finally, the proposed mechanism acquired superior results than the existing benchmarked mechanisms over all the performance evaluation metrics used for analysis over IoT dynamic data.
Publisher
IGI Global
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference19 articles.
1. Real-time probabilistic data fusion for large-scale IoT applications.;A.Adnan;IEEE Access : Practical Innovations, Open Solutions,2018
2. ECMCRR-MPDNL for Cellular Network Traffic Prediction With Big Data
3. IoT-KEEPER: Detecting Malicious IoT Network Activity Using Online Traffic Analysis at the Edge
4. On Road Intelligent Vehicle Path Predication and Clustering using Machine Learning Approach
5. SensorHUB: An IoT Driver Framework for Supporting Sensor Networks and Data Analysis, International Journal of Distributed Sensor Networks;L.Lengyel;Hindawi,2015
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3