Development of a Novel Robotic Catheter Manipulating System with Fuzzy PID Control

Author:

Ma Xu1,Guo Shuxiang2,Xiao Nan1,Guo Jian1,Yoshida Shunichi1,Tamiya Takashi1,Kawanishi Masahiko1

Affiliation:

1. Kagawa University, Japan

2. Kagawa University, Japan, and Harbin Engineering University, China

Abstract

Manual operation of steerable catheter is inaccurate in minimally invasive surgery, requiring dexterity for efficient manipulation of the catheter, and it exposes the surgeons to intense radiation. The authors’ objectives are to develop a robotic catheter manipulating system that replaces the surgeons with high accuracy. Increasing demands for flexibility and fast reactions in a control method, fuzzy control (FC) can play an important role because the experience of experts can be combined in the fuzzy control rules to be implemented in the systems. They present a practical application of a fuzzy PID control to this developed system during the remote operations and compare with the traditional PID (Proportional-Integral-Derivative Controllers) control experimentally. The feasibility and effectiveness of the control method are demonstrated. The synchronous manipulation performance with the fuzzy PID control is much better than using the conventional PID control method during the remote operations.

Publisher

IGI Global

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3