FPGA-Based Object Detection and Motion Tracking in Micro- and Nanorobotics

Author:

Diederichs Claas1,Fatikow Sergej1

Affiliation:

1. Department of Computing Science, University of Oldenburg, Oldenburg, Germany

Abstract

Object-detection and classification is a key task in micro- and nanohandling. The microscopic imaging is often the only available sensing technique to detect information about the positions and orientations of objects. FPGA-based image processing is superior to state of the art PC-based image processing in terms of achievable update rate, latency and jitter. A connected component labeling algorithm is presented and analyzed for its high speed object detection and classification feasibility. The features of connected components are discussed and analyzed for their feasibility with a single-pass connected component labeling approach, focused on principal component analysis-based features. It is shown that an FPGA implementation of the algorithm can be used for high-speed tool tracking as well as object classification inside optical microscopes. Furthermore, it is shown that an FPGA implementation of the algorithm can be used to detect and classify carbon-nanotubes (CNTs) during image acquisition in a scanning electron microscope, allowing fast object detection before the whole image is captured.

Publisher

IGI Global

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Development of the Hardware Architecture to Perform Template Matching using Distance Transform;Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication;2016-01-04

2. Advanced Methods for High-Speed Template Matching Targeting FPGAs;2014 International Symposium on Optomechatronic Technologies;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3