Affiliation:
1. Department of Computing Science, University of Oldenburg, Oldenburg, Germany
Abstract
Object-detection and classification is a key task in micro- and nanohandling. The microscopic imaging is often the only available sensing technique to detect information about the positions and orientations of objects. FPGA-based image processing is superior to state of the art PC-based image processing in terms of achievable update rate, latency and jitter. A connected component labeling algorithm is presented and analyzed for its high speed object detection and classification feasibility. The features of connected components are discussed and analyzed for their feasibility with a single-pass connected component labeling approach, focused on principal component analysis-based features. It is shown that an FPGA implementation of the algorithm can be used for high-speed tool tracking as well as object classification inside optical microscopes. Furthermore, it is shown that an FPGA implementation of the algorithm can be used to detect and classify carbon-nanotubes (CNTs) during image acquisition in a scanning electron microscope, allowing fast object detection before the whole image is captured.
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Development of the Hardware Architecture to Perform Template Matching using Distance Transform;Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication;2016-01-04
2. Advanced Methods for High-Speed Template Matching Targeting FPGAs;2014 International Symposium on Optomechatronic Technologies;2014-11