Affiliation:
1. KIIT (Deemed), India
2. Seemanta Engineering College, India
Abstract
This paper presents an automatic human ear localization technique for handling uncontrolled scenarios such as illumination variation, poor contrast, partial occlusion, pose variation, ear ornaments, and background noise. The authors developed entropy-based binary Jaya algorithm (EBJA) and weighted doubly modified Hausdorff distance (W-MHD) to use edge information rather than pixels intensity values of the side face image. First, it embodies skin segmentation procedure using skin color model and successively remove spurious and non-ear edges which reduces the search space of the skin regions. Secondly, EBJA is proposed to trace dense edge regions as probable ear candidates. Thirdly, this paper developed an edge based weight function to represent the ear shape along with for the edge based template matching using W-MHD to identify true ear from a set of probable ear candidates. Experimental results using publicly available benchmark datasets demonstrate the competitiveness of the proposed technique in comparison to the state-of-the-art methods.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献