Fuzzy Optimized Gravitational Search Algorithm for Disease Prediction

Author:

Yadav Utkarsh1,Tyagi Twishi2,Nagpal Sushama3

Affiliation:

1. CRED, India

2. Samsung R&D, India

3. Netaji Subhas University of Technology, Delhi, India

Abstract

In this article, fuzzy logic and gravitational search algorithms have been amalgamated and explored for feature selection in the automated prediction of diseases. The gravitational search algorithm has been used for search optimization while fuzzy logic had been used for its parameter tuning. Feature selection has been considered as a dual objective problem in the article, i.e. selecting minimum number of features without compromising the accuracy of classification, which is performed using K-Nearest Neighbour classifier. The improved algorithm has been tested with various publicly available medical datasets to analyse its effectiveness. The results indicate that the approach not only reduces the feature set by an average of 67.66% but also increases the accuracy by an average of 12%. Further, the results have also been compared with the prior work wherein the feature selection has been done using other evolutionary techniques. It is observed that the proposed approach is able to generate better results in most of the cases.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3