A Probabilistic Multi-Objective Approach for Power Flow Optimization in Hybrid Wind-Based Power Systems Using Grasshopper Optimization Algorithm

Author:

Mandal Barun1ORCID,Roy Provas Kumar1ORCID

Affiliation:

1. Kalyani Government Engineering College, India

Abstract

This article introduces a grasshopper optimization algorithm (GOA) to efficiently prove its superiority for solving different objectives of optimal power flow (OPF) based on a mixture thermal power plant that incorporates uncertain wind energy (WE) sources. Many practical constraints of generators, valve point effect, multiple fuels, and the various scenarios incorporating several configurations of WEs are considered for both singles along with multi-objectives for the OPF issue. Within the article, the considered method is verified on two common bus experiment systems, i.e. IEEE 30-bus as well as the IEEE 57-bus. Here, the fuel amount minimization and emission minimization are studied as the primary purposes of a GOA-based OPF problem. However, the proposed algorithm yields a reasonable conclusion about the better performance of the wind turbine. Computational results express the effectiveness of the proposed GOA approach for the secure and financially viable of the power system under various uncertainties. The comparison is tabulated with the existing algorithms to provide superior results.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3