Affiliation:
1. Amity University, Jaipur, India
2. Manipal University, Jaipur, India
Abstract
Differential evolution (DE), an important evolutionary technique, enhances its parameters such as, initialization of population, mutation, crossover etc. to resolve realistic optimization issues. This work represents a modified differential evolution algorithm by using the idea of exponential scale factor and logistic map in order to address the slow convergence rate, and to keep a very good equilibrium linking exploration and exploitation. Modification is done in two ways: (i) Initialization of population and (ii) Scaling factor.The proposed algorithm is validated with the aid of a 13 different benchmark functions taking from the literature, also the outcomes are compared along with 7 different popular state of art algorithms. Further, performance of the modified algorithm is simulated on 3 realistic engineering problems. Also compared with 8 recent optimizer techniques. Again from number of function evaluations it is clear that the proposed algorithm converses more quickly than the other existing algorithms.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献