Improving Adaptive Filters for Active Noise Control Using Particle Swarm Optimization

Author:

Monteiro Rodrigo P.1,Lima Gabriel A.1,Oliveira José P. G.2,Cunha Daniel S. C.2,Bastos-Filho Carmelo J. A.1

Affiliation:

1. University of Pernambuco, Recife, Brazil

2. FITec, Recife, Brazil

Abstract

The excessive exposure to certain kinds of acoustic noise can lead to health problems. To avoid this situation, the use of noise attenuation devices is a standard solution. Among those devices, the active noise control (ANC) systems have gained prominence over the years, mainly due to the technological development and costs reduction of electronic components. Despite good performance of ANC concerning low-frequency noise attenuation, the convergence speed for this kind of system is still an important issue when it deals with real-time applications in dynamic environments. This article presents an alternative solution to accelerate the active attenuation system response. This solution is based on the use of sets of coefficients, which are employed during the adaptive filter initialization and are obtained via a training process with particle swarm optimization (PSO). Two objective functions were tested: one based on the response time itself and the other one based on the magnitude reduction of the residual noise. The coefficients obtained through this process provided response time reductions up to 98.3% concerning adaptive filters initialized with null coefficients. The article is an extended version of the conference paper Accelerating the Convergence of Adaptive Filters for Active Noise Control Using Particle Swarm Optimization, published in LA-CCI 2017.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3