Affiliation:
1. Thiagarajar College of Engineering, India
Abstract
The objective of this research work is to effectively deploy improved Binary Artificial Fish Swarm optimization Algorithm (BAFSA) with the data classification techniques. The improvement has been made with accordance to the condition of visual scope and the movement of fish to update towards the central position and chasing behavior towards best point of movement has been modified among the given population. The experimental results show that feature selection by BAFSA and classification by Decision trees and Gaussian Naïve bayes algorithm provides an improved accuracy of about 89.6% for Pima Indian diabetic dataset, 91.1% for lenses dataset and 94.4% for heart disease dataset. Statistical analysis has also been made using Fisher’s F-Test for two sample variance and the selected risk factors such as glucose, insulin level, blood pressure for diabetics datasets, spectacle prescription, tear production rate for lenses dataset and trestbps, cholesterol level, thalach, chest pain type for heart disease dataset are found to be significant with R2<0.001 respectively.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献