Collective Animal Behaviour Based Optimization Algorithm for IIR System Identification Problem

Author:

Upadhyay P.1,Kar R.1,Mandal D.1,Ghoshal S. P.2

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India

2. Department of Electrical Engineering, National Institute of Technology, Durgapur, India

Abstract

In this paper a novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied to the infinite impulse response (IIR) system identification problem. Functionality of CAB is governed by occupying the best position of an animal according to its dominance in the group. Enrichment of CAB with the features of randomness, stochastic and heuristic search nature has made the algorithm a suitable tool for finding the global optimal solution. The proposed CAB has alleviated from the defects of premature convergence and stagnation, shown by real coded genetic algorithm (RGA), particle swarm optimization (PSO) and differential evolution (DE) in the present system identification problem. The simulation results obtained for some well known benchmark examples justify the efficacy of the proposed system identification approach using CAB over RGA, PSO and DE in terms of convergence speed, unknown plant coefficients and mean square error (MSE) values produced for IIR system models of both the same order and reduced order.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

Reference45 articles.

1. Power Quality Disturbance Classification Using Fuzzy C-Means Algorithm and Adaptive Particle Swarm Optimization

2. Digital IIR filter design using particle swarm optimisation

3. An algorithm for global optimization inspired by collective animal behaviour. Discrete dynamics in nature and society (DDNS);E.Cuevas;Article ID,2012

4. Seeker Optimization Algorithm for Digital IIR Filter Design

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3