Affiliation:
1. ORLab Analytics, Vancouver, Canada
Abstract
Although greedy algorithms are important, nowadays it is well assumed that the solutions they obtain can be used as a starting point for more sophisticated methods. This paper describes an evolutionary approach which is based on genetic algorithms (GA). A constructive heuristic, so-called fuzzy greedy search (FGS) is employed to generate an initial population for the proposed GA. The effectiveness and efficiency of the proposed hybrid method are demonstrated on permutation flow-shop scheduling as one of the most widely studied hard combinatorial optimization problems in the area of operational research.
Subject
General Earth and Planetary Sciences,General Environmental Science