Affiliation:
1. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
Abstract
Scheduling in Computational Grid (CG) is an important but complex task. It is done to schedule the submitted jobs onto the nodes of the grid so that some characteristic parameter is optimized. Makespan of the job is an important parameter and most often scheduling is done to optimize makespan. Genetic Algorithm (GA) is a search procedure based on the evolutionary technique that is able to solve a class of complex optimization problem. However, GA takes longer to converge towards its near optimal solution. Bacteria Foraging Optimization (BFO), also derived from nature, is a technique to optimize a given function in a distributed manner. Due to limited availability of bacteria, BFO is not suitable to optimize the solution for the problem involving a large search space. Characteristics of both GA and BFO are combined so that their benefits can be reaped. The hybrid approach is referred to as Genetic Algorithms Bacteria Foraging Optimization (GABFO) algorithm. The proposed GABFO has been applied to optimize makespan of a given schedule in a computational grid. Results of the simulation, conducted to evaluate the performance of the proposed model, reveal the effectiveness of the proposed model.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献