Multi-Fuel Power Dispatch in an Interconnected Power System using Ant Lion Optimizer

Author:

Balachandar P 1,Ganesan S 1,Jayakumar N 1,Subramanian S 1

Affiliation:

1. Annamalai University, Department of Electrical Engineering, Chidambaram, India

Abstract

The electrical power generation from fossil fuel releases several contaminants into the air and this become excrescent if the generating unit is fed by Multiple Fuel Sources (MFS).The ever more stringent environmental regulations have forced the power producers to produce electricity not only at the cheapest price but also at the minimum level of pollutant emissions. Inclusion of this issue in the operational task is a welcome perspective. The cost effective and environmental responsive power system operations in the presence of MFS can be recognized as a multi-objective constrained optimization problem with conflicting operational objectives. The modern meta-heuristic algorithm namely, Ant Lion Optimizer (ALO) has been applied for the first time to obtain the feasible solution. The fuzzy decision-making mechanism has been integrated to determine the Best Compromise Solution (BCS) in the multi-objective framework. The intended algorithm is implemented on the standard test systems considering valve-point effects, CO2 emission and tie-line limits.

Publisher

IGI Global

Subject

General Medicine,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3